Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Host Microbe ; 32(4): 606-622.e8, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479396

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Febre de Chikungunya/complicações , Proteômica , Vírus Chikungunya/genética , Citocinas/metabolismo
2.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38240642

RESUMO

The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.


Assuntos
Arbovírus , Culicidae , Sequenciamento por Nanoporos , Animais , Humanos , Culicidae/genética , Arbovírus/genética , Mosquitos Vetores , Brasil , DNA
3.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376568

RESUMO

Introduction-The dynamics of SARS-CoV-2 shedding and replication in humans remain incompletely understood. Methods-We analyzed SARS-CoV-2 shedding from multiple sites in individuals with an acute COVID-19 infection by weekly sampling for five weeks in 98 immunocompetent and 25 immunosuppressed individuals. Samples and culture supernatants were tested via RT-PCR for SARS-CoV-2 to determine viral clearance rates and in vitro replication. Results-A total of 2447 clinical specimens were evaluated, including 557 nasopharyngeal swabs, 527 saliva samples, 464 urine specimens, 437 anal swabs and 462 blood samples. The SARS-CoV-2 genome sequences at each site were classified as belonging to the B.1.128 (ancestral strain) or Gamma lineage. SARS-CoV-2 detection was highest in nasopharyngeal swabs regardless of the virus strain involved or the immune status of infected individuals. The duration of viral shedding varied between clinical specimens and individual patients. Prolonged shedding of potentially infectious virus varied from 10 days up to 191 days, and primarily occurred in immunosuppressed individuals. Virus was isolated in culture from 18 nasal swab or saliva samples collected 10 or more days after onset of disease. Conclusions-Our findings indicate that persistent SARS-CoV-2 shedding may occur in both competent or immunosuppressed individuals, at multiple clinical sites and in a minority of subjects is capable of in vitro replication.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Manejo de Espécimes , Eliminação de Partículas Virais , RNA Viral/genética
4.
Lancet Microbe ; 4(5): e319-e329, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031687

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused large epidemics linked to acute, chronic, and severe clinical outcomes. Currently, Brazil has the highest number of chikungunya cases in the Americas. We aimed to investigate the spatiotemporal dynamics and recurrence pattern of chikungunya in Brazil since its introduction in 2013. METHODS: In this epidemiological study, we used CHIKV genomic sequencing data, CHIKV vector information, and aggregate clinical data on chikungunya cases from Brazil. The genomic data comprised 241 Brazilian CHIKV genome sequences from GenBank (n=180) and the 2022 CHIKV outbreak in Ceará state (n=61). The vector data (Breteau index and House index) were obtained from the Brazilian Ministry of Health for all 184 municipalities in Ceará state and 116 municipalities in Tocantins state in 2022. Epidemiological data on laboratory-confirmed cases of chikungunya between 2013 and 2022 were obtained from the Brazilian Ministry of Health and Laboratory of Public Health of Ceará. We assessed the spatiotemporal dynamics of chikungunya in Brazil via time series, mapping, age-sex distribution, cumulative case-fatality, linear correlation, logistic regression, and phylogenetic analyses. FINDINGS: Between March 3, 2013, and June 4, 2022, 253 545 laboratory-confirmed chikungunya cases were reported in 3316 (59·5%) of 5570 municipalities, mainly distributed in seven epidemic waves from 2016 to 2022. To date, Ceará in the northeast has been the most affected state, with 77 418 cases during the two largest epidemic waves in 2016 and 2017 and the third wave in 2022. From 2016 to 2022 in Ceará, the odds of being CHIKV-positive were higher in females than in males (odds ratio 0·87, 95% CI 0·85-0·89, p<0·0001), and the cumulative case-fatality ratio was 1·3 deaths per 1000 cases. Chikungunya recurrences in the states of Ceará, Tocantins (recurrence in 2022), and Pernambuco (recurrence in 2021) were limited to municipalities with few or no previously reported cases in the previous epidemic waves. The recurrence of chikungunya in Ceará in 2022 was associated with a new East-Central-South-African lineage. Population density metrics of the main CHIKV vector in Brazil, Aedes aegypti, were not correlated spatially with locations of chikungunya recurrence in Ceará and Tocantins. INTERPRETATION: Spatial heterogeneity of CHIKV spread and population immunity might explain the recurrence pattern of chikungunya in Brazil. These results can be used to inform public health interventions to prevent future chikungunya epidemic waves in urban settings. FUNDING: Global Virus Network, Burroughs Wellcome Fund, Wellcome Trust, US National Institutes of Health, São Paulo Research Foundation, Brazil Ministry of Education, UK Medical Research Council, Brazilian National Council for Scientific and Technological Development, and UK Royal Society. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Masculino , Animais , Feminino , Humanos , Vírus Chikungunya/genética , Febre de Chikungunya/epidemiologia , Brasil/epidemiologia , Filogenia , Mosquitos Vetores , Estudos Epidemiológicos
5.
Travel Med Infect Dis ; 48: 102351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35537676

RESUMO

BACKGROUND: Only two naturally occurring human Sabiá virus (SABV) infections have been reported, and those occurred over 20 years ago. METHODS: We diagnosed two new cases of SABV infection using metagenomics in patients thought to have severe yellow fever and described new features of histopathological findings. RESULTS: We characterized clinical manifestations, histopathology and analyzed possible nosocomial transmission. Patients presented with hepatitis, bleeding, neurological alterations and died. We traced twenty-nine hospital contacts and evaluated them clinically and by RT-PCR and neutralizing antibodies. Autopsies uncovered unique features on electron microscopy, such as hepatocyte "pinewood knot" lesions. Although previous reports with similar New-World arenavirus had nosocomial transmission, our data did not find any case in contact tracing. CONCLUSIONS: Although an apparent by rare, Brazilian mammarenavirus infection is an etiology for acute hemorrhagic fever syndrome. The two fatal cases had peculiar histopathological findings not previously described. The virological diagnosis was possible only by contemporary techniques such as metagenomic assays. We found no subsequent infections when we used serological and molecular tests to evaluate close contacts.


Assuntos
Arenavirus do Novo Mundo , Infecção Hospitalar , Febre Amarela , Anticorpos Neutralizantes , Brasil/epidemiologia , Humanos
7.
Lancet Microbe ; 2(10): e527-e535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34258603

RESUMO

BACKGROUND: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. METHODS: We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). FINDINGS: In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT50s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT50s below limit of detection). Median VNT50s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests. INTERPRETATION: SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. FUNDING: São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Brasil/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Estados Unidos , Vacinação
8.
Clin Infect Dis ; 73(11): 2045-2054, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956939

RESUMO

BACKGROUND: Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS: We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS: Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS: Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.


Assuntos
COVID-19 , Dengue , Brasil/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Dengue/epidemiologia , Humanos , Pandemias , SARS-CoV-2
9.
Science ; 372(6544): 815-821, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33853970

RESUMO

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Brasil/epidemiologia , Monitoramento Epidemiológico , Genoma Viral , Genômica , Humanos , Modelos Teóricos , Epidemiologia Molecular , Mutação , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga Viral
10.
Emerg Infect Dis ; 27(6): 1737-1740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33871331

RESUMO

We documented 4 cases of severe acute respiratory syndrome coronavirus 2 reinfection by non-variant of concern strains among healthcare workers in Campinas, Brazil. We isolated infectious particles from nasopharyngeal secretions during both infection episodes. Improved and continued protection measures are necessary to mitigate the risk for reinfection among healthcare workers.


Assuntos
COVID-19/diagnóstico , Pessoal de Saúde , Reinfecção/diagnóstico , Reinfecção/virologia , SARS-CoV-2/isolamento & purificação , Eliminação de Partículas Virais , Adulto , Brasil/epidemiologia , COVID-19/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Reinfecção/terapia
11.
medRxiv ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33688664

RESUMO

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.

12.
Wellcome Open Res ; 6: 241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37224315

RESUMO

Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.

13.
Science ; 372(6544): 1-7, 2021. graf
Artigo em Inglês | LILACS, CONASS, Coleciona SUS, Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP | ID: biblio-1247888

RESUMO

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Assuntos
Angiotensinas , Genoma , Betacoronavirus
14.
Science ; 369(6508): 1255-1260, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32703910

RESUMO

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Número Básico de Reprodução , Teorema de Bayes , Betacoronavirus/classificação , Brasil/epidemiologia , COVID-19 , Teste para COVID-19 , Cidades/epidemiologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Europa (Continente) , Evolução Molecular , Genoma Viral , Humanos , Modelos Genéticos , Modelos Estatísticos , Pandemias/prevenção & controle , Filogenia , Filogeografia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , SARS-CoV-2 , Análise Espaço-Temporal , Viagem , População Urbana
15.
Lancet Infect Dis ; 19(10): 1138-1147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31559967

RESUMO

BACKGROUND: Zika virus infections and suspected microcephaly cases have been reported in Angola since late 2016, but no data are available about the origins, epidemiology, and diversity of the virus. We aimed to investigate the emergence and circulation of Zika virus in Angola. METHODS: Diagnostic samples collected by the Angolan Ministry of Health as part of routine arboviral surveillance were tested by real-time reverse transcription PCR by the Instituto Nacional de Investigação em Saúde (Ministry of Health, Luanda, Angola). To identify further samples positive for Zika virus and appropriate for genomic sequencing, we also tested samples from a 2017 study of people with HIV in Luanda. Portable sequencing was used to generate Angolan Zika virus genome sequences from three people positive for Zika virus infection by real-time reverse transcription PCR, including one neonate with microcephaly. Genetic and mobility data were analysed to investigate the date of introduction and geographical origin of Zika virus in Angola. Brain CT and MRI, and serological assays were done on a child with microcephaly to confirm microcephaly and assess previous Zika virus infection. FINDINGS: Serum samples from 54 people with suspected acute Zika virus infection, 76 infants with suspected microcephaly, 24 mothers of infants with suspected microcephaly, 336 patients with suspected dengue virus or chikungunya virus infection, and 349 samples from the HIV study were tested by real-time reverse transcription PCR. Four cases identified between December, 2016, and June, 2017, tested positive for Zika virus. Analyses of viral genomic and human mobility data suggest that Zika virus was probably introduced to Angola from Brazil between July, 2015, and June, 2016. This introduction probably initiated local circulation of Zika virus in Angola that continued until at least June, 2017. The infant with microcephaly in whom CT and MRI were done had brain abnormalities consistent with congenital Zika syndrome and serological evidence for Zika virus infection. INTERPRETATION: Our analyses show that autochthonous transmission of the Asian lineage of Zika virus has taken place in Africa. Zika virus surveillance and surveillance of associated cases of microcephaly throughout the continent is crucial. FUNDING: Royal Society, Wellcome Trust, Global Challenges Research Fund (UK Research and Innovation), Africa Oxford, John Fell Fund, Oxford Martin School, European Research Council, Departamento de Ciência e Tecnologia/Ministério da Saúde/National Council for Scientific and Technological Development, and Ministério da Educação/Coordenação de Aperfeicoamento de Pessoal de Nível Superior.


Assuntos
Surtos de Doenças , Transmissão Vertical de Doenças Infecciosas , Filogenia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Angola/epidemiologia , Sequência de Bases , Feminino , Genoma Viral/genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/sangue , Microcefalia/etiologia , Microcefalia/virologia , Mães , Gravidez , RNA Viral/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia
16.
Nat Protoc ; 12(6): 1261-1276, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28538739

RESUMO

Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.


Assuntos
Vírus de DNA/genética , Genoma Viral , Reação em Cadeia da Polimerase Multiplex/métodos , Vírus de RNA/genética , Análise de Sequência de DNA/métodos , Epidemiologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...